首页> 外文OA文献 >QoE-Based Low-Delay Live Streaming Using Throughput Predictions
【2h】

QoE-Based Low-Delay Live Streaming Using Throughput Predictions

机译:基于QoE的低延迟实时流媒体使用吞吐量预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently, HTTP-based adaptive streaming has become the de facto standard forvideo streaming over the Internet. It allows clients to dynamically adapt mediacharacteristics to network conditions in order to ensure a high quality ofexperience, that is, minimize playback interruptions, while maximizing videoquality at a reasonable level of quality changes. In the case of livestreaming, this task becomes particularly challenging due to the latencyconstraints. The challenge further increases if a client uses a wirelessnetwork, where the throughput is subject to considerable fluctuations.Consequently, live streams often exhibit latencies of up to 30 seconds. In thepresent work, we introduce an adaptation algorithm for HTTP-based livestreaming called LOLYPOP (Low-Latency Prediction-Based Adaptation) that isdesigned to operate with a transport latency of few seconds. To reach thisgoal, LOLYPOP leverages TCP throughput predictions on multiple time scales,from 1 to 10 seconds, along with an estimate of the prediction errordistribution. In addition to satisfying the latency constraint, the algorithmheuristically maximizes the quality of experience by maximizing the averagevideo quality as a function of the number of skipped segments and qualitytransitions. In order to select an efficient prediction method, we studied theperformance of several time series prediction methods in IEEE 802.11 wirelessaccess networks. We evaluated LOLYPOP under a large set of experimentalconditions limiting the transport latency to 3 seconds, against astate-of-the-art adaptation algorithm from the literature, called FESTIVE. Weobserved that the average video quality is by up to a factor of 3 higher thanwith FESTIVE. We also observed that LOLYPOP is able to reach a broader regionin the quality of experience space, and thus it is better adjustable to theuser profile or service provider requirements.
机译:近来,基于HTTP的自适应流已成为Internet上视频流的事实上的标准。它允许客户端动态地使媒体特性适应网络状况,以确保高质量的体验,即最大程度地减少播放中断,同时在合理的质量变化级别上最大化视频质量。在直播的情况下,由于延迟限制,此任务变得特别具有挑战性。如果客户端使用无线网络,吞吐量会受到很大的波动,那么挑战将进一步加剧,因此,直播流通常会出现长达30秒的延迟。在本工作中,我们为基于HTTP的实时流引入一种称为LOLYPOP(基于低延迟预测的自适应)的自适应算法,该算法旨在以几秒钟的传输延迟运行。为了达到此目标,LOLYPOP在1到10秒的多个时间范围内利用TCP吞吐量预测以及预测误差分布的估计。除了满足等待时间约束之外,该算法还通过根据跳过的段数和质量转换的数量最大化平均视频质量,在经验上最大化体验质量。为了选择一种有效的预测方法,我们研究了几种时间序列预测方法在IEEE 802.11无线接入网络中的性能。与文献中称为FESTIVE的最先进的自适应算法相比,我们在大量实验条件下(将传输延迟限制为3秒)评估了LOLYPOP。我们观察到,平均视频质量比FESTIVE高3倍。我们还观察到,LOLYPOP可以在体验空间的质量上达到更广泛的区域,因此可以更好地适应用户资料或服务提供商的要求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号